Debreu’s Theorem proof by Ariel Rubinstein and friends

In what follows, we will need the mathematical concept of a dense set.

Definition 0.1. A set Y is said to be dense in X if every non-empty open set $B \subset X$ contains an element in Y.

Corollary 0.2. Any set $X \subset \mathbb{R}^m$ has a countable dense subset.

Proof. The standard topology in \mathbb{R}^n has a countable base, that is, any open set is the union of subsets of the countable collection of open sets: $B(a, \frac{1}{m})$ for $a \in \mathbb{R}^m$ and all its components are rational numbers; m is a natural number.

For every set $B(q, \frac{1}{m})$ that intersects X, pick a point $y_{q,m} \in X \cap B(q, \frac{1}{m})$. The set that contains all of the points $y_{q,m}$ is a countable dense set in X.

Theorem 0.3. Debreu’s. Let \succeq be a continuous preference relation on X, which is a convex subset of \mathbb{R}^n. Then \succeq has a continuous utility representation.

Before we prove this theorem few lemmas

Lemma 0.4. If $x \succ y$ then there $\exists z \in X$ s.t. $x \succ z \succ y$

Proof. Assume not. Let I be the interval between x and y. By the convexity of X, $I \subset X$.

Construct inductively two sequences of points in I, $\{x_t\}$ and $\{y_t\}$, in the following manner:
First, define $x_0 = x$ and $y_0 = y$. Assume that the two points $x_t, y_t \in I$, and satisfy $x_t \succeq x$ and $y \succeq y_t$. Consider m, the middle point between x_t and y_t. Either $m \succeq x$ or $y \succeq m$. In the former case, define $x_{t+1} = m$ and $y_{t+1} = y_t$, and in the latter case define $x_{t+1} = x_t$ and $y_{t+1} = m$.

The sequences $\{x_t\}$ and $\{y_t\}$ are converging, and they must converge to the same point z because the distance between x_t and y_t converges to zero. By the continuity of \succeq, we have $z \succeq x$ and $y \succeq z$ and thus, by transitivity, $y \succeq x$, which contradicts the assumption that $x \succ y$.

Another simple proof would fit the more general case, in which the assumption that the set X is convex is replaced by the weaker assumption that X is a connected subset of \mathbb{R}^n: If there is no z such that $x \succ z \succ y$, then X is the union of two disjoint sets $\{a | a \succ y\}$ and $\{a | x \succ a\}$, which are open by the continuity of the preference relation.

This contradicts the connectness of X (a connected set cannot be covered by two nonempty disjoint open sets).

Lemma 0.5. Let Y be dense in X. Then for every $x, y \in X$ if $x \succ y$ then there $\exists z \in X$ s.t. $x \succ z \succ y$

Proof. By Lemma 1, there exists $z \in X$ such that $x \succ z \succ y$. By continuity, there is a ball around z such that any point in the ball is sandwiched between x and y and, by the denseness of Y, the ball contains an element of Y.

1
Lemma 0.6. Let \(E \) be the set of \(\succeq - \)maxima and \(\succeq - \)minima in \(X \). Let \(Y \) be a countable dense set in \(XE \). Then, \(\succeq \) has a utility representation on \(Y \), \(u \) with a range that consists of all dyadic rational numbers in \((0,1)\) (namely all numbers that can be expressed as \(k/2^{l} \) where \(k \) and \(l \) are natural numbers and \(k < 2^{l} \)).

Proof. By Lemma 1, \(XE \) is an infinite set and therefore \(Y \) is as well. Let \(Y = \{y_{n}\} \).

Construct \(u \) by induction as follows:

Start with \(u(y_{1}) = 0.5 \). Let \(P(y_{n}) = \{y_{1}, \ldots, y_{n}\} \), i.e., the set of elements that precedes \(y_{n} \) in the enumeration of \(Y \). If \(y_{n} \sim y_{m} \) for some \(y_{m} \in P(y_{n}) \), let \(u(y_{n}) = u(y_{m}) \). If \(y_{n} \succ y_{k} \) where \(y_{k} \) is maximal in \(P(y_{n}) \), set \(u(y_{n}) = (1 + u(y_{k}))/2 \).

If \(y_{k} \succ y_{n} \) where \(y_{k} \) is minimal in \(P(y_{n}) \), set \(u(y_{n}) = u(y_{k})/2 \).

Otherwise, there are \(y_{i}, y_{j} \in P(y_{n}) \) such that \(y_{i} \) is minimal among the elements in \(P(y_{n}) \) that are preferred to \(y_{n} \) and \(y_{j} \) is maximal among the elements in \(P(y_{n}) \) that are inferior to \(y_{n} \). Let \(u(y_{n}) = (u(y_{i}) + u(y_{j}))/2 \).

Note that by Lemma 2, for every element in the sequence there will always eventually be one element in the sequence that is above it and one that is below it and for every two elements in the sequence there will eventually be an element in the sequence that is sandwiched between the two.

Therefore, the range of \(u \) is exactly all dyadic numbers in \((0,1)\).

Proof. Here we complete the proof of Debreu’s Theorem (0.3)

Let \(Y \) be a countable dense set in \(XE \). Define \(u \) on \(Y \) according to Lemma 3.

The function \(u \) can be extended to \(X \) by:

1. assigning the value 1 to all maxima points in \(X \) and the value 0 to all minima points

2. defining \(u(x) = \sup\{u(y)| x \succ y \land y \in Y \} \quad \forall x \notin Y \cup E \).

This function represents the preference relation since by definition if \(x \sim z \) we have \(u(x) = u(z) \) and if \(x \succ z \) then by Lemma 2 there are \(y_{1} \) and \(y_{2} \) in \(Y \) such that \(x \succ y_{1} \succ y_{2} \succ z \) and thus \(u(x) \geq u(y_{1}) \geq u(y_{2}) \geq u(z) \).

In order to prove the continuity of \(u \), consider a point \(x \notin E \) (a similar proof applies to extreme points). Let \(\epsilon > 0 \).

By Lemma 3, there are \(y_{1} \) and \(y_{2} \) in \(Y \) such that

\[
 u(x) - \epsilon < u(y_{1}) < u(x) < u(y_{2}) < u(x) - \epsilon
\]

By twice applying the definition of the continuity of \(\succeq \), we obtain a ball \(B \) around \(x \) that is between \(y_{1} \) and \(y_{2} \) with respect to the preference relation. By definition, elements in this ball receive \(u \) values between \(u(y_{1}) \) and \(u(y_{2}) \) and thus are not further than \(\epsilon \) from \(u(x) \).