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In what follows, we will need the mathematical concept of a dense set.

Definition 0.1. A set Y is said to be dense in X if every non-empty open set B ⊂ X contains an

element in Y

Corollary 0.2. Any set X ⊂ Rm has a countable dense subset.

Proof. The standard topology in Rn has a countable base, that is, any open set is the union of subsets

of the countable collection of open sets: B(a, 1
m

) a ∈ Rm and all its componenets are rationalnumbers;

m is a natural number.

For every set B(q, 1
m

that intersects X, pick a point yq,m ∈ X ∩ B(q, 1
m

). The set that contains all of

the points yq,m is a countable dense set in X.

Theorem 0.3. Debreu’s. Let � be a continuous preference relation on X, which is a convex subset of

Rn. Then � has a continuous utility representation.

Before we prove this theorem few lemmas

Lemma 0.4. If x � y then there ∃z ∈ X s.t. x � z � y

Proof. Assume not. Let I be the interval between x and y. By the convexity of X, I ⊂ X.

Construct inductively two sequences of points in I, {xt} and {yt}, in the following manner:

First, define x0 = x and y0 = y. Assume that the two points xt, yt ∈ I, and satisfy xt � x and y � yt.

Consider m, the middle point between xt and yt. Either m � x or y � m. In the former case, define

xt+1 = m and yt+1 = yt, and in the latter case define xt+1 = xt and yt+1 = m.

The sequences {xt} and {yt} are converging, and they must converge to the same point z because

the distance between xt and yt converges to zero. By the continuity of �, we have z � x and y � z and

thus, by transitivity, y � x, which contradicts the assumption that x � y.
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Another simple proof would fit the more general case, in which the assumption that the set X is

convex is replaced by the weaker assumption that X is a connected subset of Rn: If there is no z such

that x � z � y, then X is the union of two disjoint sets {a|a � y} and {a|x � a}, which are open by

the continuity of the preference relation.

This contradicts the connectness of X (a connected set cannot be covered by two nonempty disjoint

open sets).

Lemma 0.5. Let Y be dense in X. Then for every x, y ∈ X if x � y then there ∃z ∈ X s.t. x � z � y

Proof. By Lemma 1, there exists z ∈ X such that x � z � y. By continuity, there is a ball around

z such that any point in the ball is sandwiched between x and y and, by the denseness of Y , the ball

contains an element of Y .

Lemma 0.6. Let E be the set of � -maxima and � -minima in X. Let Y be a countable dense set

in XE. Then, � has a utility representation on Y , u with a range that consists of all dyadic rational

numbers in (0, 1) (namely all numbers that can be expressed as k/2l where k and l are natural numbers

and k < 2l).

Proof. By Lemma 1, XE is an infinite set and therefore Y is as well. Let Y = {yn}.

Construct u by induction as follows:

Start with u(y1) = 0.5. Let P (yn) = {y1, . . . yn1}, i.e., the set of elements that precedes yn in the

enumeration of Y . If yn ∼ ym for some ym ∈ P (yn), let u(yn) = u(ym). If yn � yk where yk is maximal

in P (yn), set u(yn) = (1 + u(yk))/2. If yk � yn where yk is minimal in P (yn), set u(yn) = u(yk)/2.

Otherwise, there are yi, yj ∈ P (yn) such that yi is minimal among the elements in P (yn) that

are preferred to yn and yj is maximal among the elements in P (yn) that are inferior to yn. Let

u(yn) = (u(yi) + u(yj))/2.

Note that by Lemma 2, for every element in the sequence there will always eventually be one ele-

ment in the sequence that is above it and one that is below it and for every two elements in the sequence
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there will eventually be an element in the sequence that is sandwiched between the two.

Therefore, the range of u is exactly all dyadic numbers in (0, 1).

Proof. Here we comlpete the proof of Debreu’s Theorem (0.3)

Let Y be a countable dense set in XE. Define u on Y according to Lemma 3 .

The function u can be extended to X by:

1. assigning the value 1 to all maxima points in X and the value 0 to all minima points

2. defining u(x) = sup{u(y)|x � yandy ∈ Y } ∀x /∈ Y ∪ E.

This function represents the preference relation since by definition if x ∼ z we have u(x) = u(z)

and if x � z then by Lemma 2 there are y1 and y2 in Y such that x � y1 � y2 � z and thus

u(x) ≥ u(y1) ≥ u(y2) ≥ u(z).

In order to prove the continuity of u, consider a point x /∈ E (a similar proof applies to extreme points).

Let ε > 0. By Lemma 3, there are y1 and y2 in Y such that

u(x)− ε < u(y1) < u(x) < u(y2) < u(x)− ε

By twice applying the definition of the continuity of �, we obtain a ball B around x that is between

y1 and y2 with respect to the preference relation. By definition, elements in this ball receive u values

between u(y1) and u(y2) and thus are not further than ε from u(x).


